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PREFACE

Technical advances in the on-the-move adjustability of military
vehicle suspension components, on board terrain sensing, modern system
control theory, and microprocessors have combined in recent years to
greatly increase the potential for improving the ride performance of
military vehicles. Increasing emphasis on fire-on-the move, lighter
weight combat vehicles, and higher horsepower per ton ratios make the
role of the suspension system more critical for mission performance.
This report documents and develops the theory and methods required
for real time processing of sensed terrain elevation data in order to
make it useful for suspension adjustment decisions. It also demonstrates
the successful real time application of the techniques on a currently
available microprocessor.

This work was performed for the Tank-Automotive Systems Laboratory
of the U.S. Army Tank-Automotive Command, Warren, Michigan, under the
overall direction of Mr. Michael Kaifesh, Chief of the Track and
Suspension sub-function, and Mr. Leonard Sloncz, Track and Suspension
project engineer. Mr. Robert Daigle of the Applied Research Function
was technical monitor for the contract.
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1.0 INTRODUCTION

The possibility of obtairning improvement in the ride quality of a
vehicle using a damping rate which varies according to the terrain
roughness has been considered in literatures suchas [1 ] - [ 5 ].
Recently, a preliminary feasibility study on the identification of terrain
roughness and frequency characteristics was carried out by Daigle [5 ]
using sampled-data analysis and digital filtering techniques. In this study,
a mathematical decision scheme for characterizing the terrain roughness in
terms of its frequency (wave lengths) contents is developed. The
development assumes that the terrain elevation can be sensed, sampled and
digitdzed .. The terrain elevation sampled-data stream is then passed
through frequency selective filters which separate the frequency components
of the data into different adjacent bands or channels on the frequency
spectrum. The FMS value from each channel is computed, and the relative
amplitude of the RMS values is used to indicate certain degrees of terrain

roughness present in each of the channels.

Simulations of the above sampled-data, digital filtering and decision
scheme were made on the Systems Engineering Laboratories (SEL) digital
computer. The effectiveness of the scheme for indicating or identifying
the terrain roughness was strongly supported by the simulation results.

The use of the terrain roughness idéntification scheme is proposed [ 5 1],
among other techniques, as a possible means of incorporating a microprocessor-

based on-board adaptive suspension control unit for a vehicle.

To determine the feasibility of an actual implementation of the
microprocessor-based on-board system, a preliminary investigation into
experimental microprocessor-based filters 1is suggested. A main concern of
the investigation is the computational speed and numerical
accuracies of the microprocessor in the realization of high order digital
filters. As a rough guideline, it is noted that the digital frequency

selective filters used in the formulation of the above terrain roughness




identification scheme consist of bandpass arnd highpass filters whose

critical frequencies are less than 10 Hz.
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2.0 OBJECTIVES

The objective of this report is to investigate the design and to carry
out the actual implementation of microprocessor-based frequency selective
filters which may be suitable for the terrain roughness identification purposes.
In the design phase of the investigation, a systematic procedure for designing
digital filters is developed. The procedure is based on bilinear transformation
technique with emphasized consideration on the compensation of frequency
warping and on the choice of the ratio of working frequency to sampling
frequency. The effectiveness of the proposed design procedure will be

demonstrated by several exampies. It is remarked that the potential of the

procedure may be enhanced by the intcorporation of computer—-aided digital

filter design techniques.

In the implementation phase of the investigation, the hardware
and software for a microprocessor-based digital signal processing system will
be developed. Microprocessor realization of digital frequency selective

filters will be demonstrated by the implementation of digital lowpass,

‘highpass, bandpass and bandstop filters. The actual experimental frequency

responses of the microprocessor-based digital filters will be recorded

and compared to their theoretical frequency responses.

The organization of this report is as follows. The systematic procedure
for the design of digital filters is developed in Section 5.1, the
hardware and software for the microprocessor-based signal processing system
and filters is described in Section 5.2 and Appendix B. The actual experimental
frequency response of the microprocessor-based digital filters is given in
SectionASMB.Section 4 discusses the results of the investigation and provides
a few recommendations for the direction of future effort. A summary on the
design of analog Butterworth frequency selective filters is given in

Appendix A.

11
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3.0 CONCLUSIONS

The design procedure developed in Section 5 provides a systematic
technique for obtaining a digital filter from a corresponding analog filter
using bilinear transformation. The technique takes into consideration the
frequency warping and the ratio of working to sampling frequencies.( The
effectiveness of the design procedures is illustrated by Examples 1 - 5,

where the design specifications are satisfactorily fulfilled.

Based on the experimental results and performance of the microprocessor-
based frequency selective filters presented in Section 5, the following may

be inferred:

. The computational speed of the microprocessor-based system is sufficiently
fast for the implementation of the digital frequency selective filters with
the required specifications. As noted in the Introduction, the
critical frequencies of the digital filters required in the terrain
roughness identification schemes are less than 10 Hz. It is seen in
Table 2 that the critical frequencies of the experimental microprocessor-
based filters can be much higher than the required specification.*

This further implies that there is room in the processing time for implem-

enting higher order filters.

. The numerical accuracies of the microprocessor-based system using 12-bit
word length data is adequate for the implementation of the filters. This
is clearly illustrated by comparing the theoretical frequency responses of
the digital filters depicted in Figs. 6, 8, 10, 12 and 14 to the actual
experimental frequency responses of the microprocessor-based filters
depicted by Figs. 19, 20, 21, 22 and 23.

*
It is reminded that the microprocessor-based filters can readily be tuned,

by adjusting the sampling frequency W, SO that the critical frequencies

coincide with the desired specifications.

13
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4, 0 RECOMMENDATIONS

The successful preliminary investigation into the microprocessor realization
of the digital frequency selective filters provides a favorable possibility
for implementing a microprocessor-based on-board terrain roughness identification

system using digital filtering techniques. The following effort in line with

the investigation of microprocessor-based signal processing system in this

report may be pursued in the future:

. Implementation of microprocessor-based system with parallel processing;
. Use of 16-bit microprocessors;

. Use of fast arithmetic and support chips;

. Computer aided design package for the design procedures developed in

Section 5

. Implementation of the mathematical decision criterion for identifying

the terrain roughness and frequency content as suggested in [5].

Some of these efforts are currently underway.

15
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5.0 DISCUSSION

5.1 DESIGN OF DIGITAL FILTERS

The basic steps in the design of digital filters generally involve:

(1) . the specification on the general characteristics of the filters;
(ii) the approximation and design consideration in attaining the specific-
ation;

(iii) the realization of the filters using finite precision arithmetic.

Step (i) depends mainly on the application of the filters while step
(1i) depends on the design approach adopted by the designer. Step (iii)
takes into account the limitations of digital devices, such as the finite
word length in a digital circuit or machine and the finite computational

speed.

The objective of this section is concerned with step (ii) of the design;
step (iii) will be considered in the next section. In particular, the
design of infinite impulse response (IIR) digital filters (lowpass,
highpass, bandpass and bandstop filters) using analog filter formulas and

bilinear transformation will be presented in detail in this section.

While a digital filter may directly be designed
using pole-zero placement technique in the z-plane, a more traditional
approach is to transform an analog filter, based on the poles and zeroes in
the s-plane, into a corresponding digital filter satisfying a prescribed

specification. Some of the reasons for the latter approach include :

the straightforward convergence of frequency specification (in terms of
Hz or rad-s-l) for an analog filter into the frequency specification
(in terms of radian frequency, angle around the unit circle, or ratio
of frequencies) for the digital filter, once the sampling rate is given;
the utilization of the highly developed art in the design of a variety
of analog filters to obtain the corresponding digital filters (e.g.
Butterworth, Chebychev or elliptic filters)

. the closed-form design formulas for analog filters which can be translated

17



to yield closed-form design formulas for the corresponding digital
filters. The closed-form formulas facilitate simplicity in the
realization of the filters.

There are many techniques for transforming or converting an analog

filter into a corresponding digital filter. One such technique is

the bilinear transformation which is described below.

18



5.1.1 DESIGNING DIGITAL FILTERS FROM ANALOG FILTERS USING BILINEAR
TRANSFORMATION WITH WORKING TO SAMPLING FREQUENCY RATIO CONSIDERATION

The design of digital filters from application of bilinear transformation
to the formulas of analog filters has been considered in literature such
as [ 6 ]-[ 7 ]. Most of the design procedures in these literature,
however, do not include a systematic way for determining the gain(say, T )
in the bilinear transformation. As will be seen shortly, the transformation
gain T is closely related to the quality in the zero-order-hold reproduction
of a processed sampled data from an analog signal by a digital filter. To
ensure a desirable reproduction quality in the digital filter output, it is

important that a proper transformation gain is used in the design.

In this section, we present a systematic approach to the design of digital
filters from analog filters using the bilinear transformation which takes
the ratio of working.or critical frequencies of the digital filter to the
sampling frequency into the design consideration. The approach provides a
straightforward procedure for choosing the transformation gain T and for
obtaining the desirable output reproduction quality in the digital filter.
The procedure is also well suited for use in computer-aided digital

filter designs.

BILINEAR TRANSFORMATION

For sampled-data signals, the Laplace transform (s-transform) can

be shown to be related to the z-transform by
z=e . (1)

where T is the sampling period. Using Pade's approximation [ 8 ], (1) can
be approximated by
1+ sT/2

eST 2 —— . (2)
1 - sT/2




In general, one may redefine the mapping as

A 14+ st/2
z = — (3a)
1 st/2

or
2 z -1
g = - e N : (3b>
T z+ 1

where T is the transformation gain. Relationship (3) is known as

BILINEAR TRANSFORMATION.

The mapping of the s-plane into the z-plane by bilinear transformation
(s) is shown in Fig. 1, which can be constructed using the following

relationships.

Define (see also Fig. 1)

analog frequency (rad-s—l),

corresponding digital frequency (rad-s-l),

nwe= e e

2n/T = sampling frequency (rad—s—l),

>

w
;i 27 = de = radian frequency (rad).
s

(a) Using (3a), the frequency axis of the s-plane (the imaginary axis,
s = jwa) is mapped into that of the z-plane (the unit circle, z = eJe)
as follows:
1+ s1t/2
1 - st/2
s=juw_
1+ Jwar/Z

1- jwaT/Z

: -1
/ﬁl + ( warlz)z]eJtan (w, /2)

. -1
v/[l + (war/2)2]eJtan (—waT/Z)

20




X -1
- eJZtan (waT/Z)

I

3° (%)

Y4
Since 8 = — 21 = w
ws

dT, (4) yields

w,T = 2tan-1(w t/2) (5a)
d a
or “
_2 _d
W o= tan( o ) . (5b)

The relationship (5) represents the frequency warping or distortion
of bilinear transformation. The characteristic of the distortion is

depicted in Figs. 2 and 3.

(b) From (3a), the real axis (s = o) of the s-plane is mapped into the

z-plane as the magnitude of

1+ ot/2
z=— |, (6)
1 -o01t/2

where o is real, and where it is seen that
-l <z<1for-~<0<20
l1<z<ofor 0<o < 2/t
- o < z < =1 for -% <0g <=

It is clear from the above that the left half of the s-plane is mapped into
the unit disk of the z-plane.

Now, let G(s) denote the transfer function of an analog filter and G(z)
denote that of a corresponding digital filter. Then using bilinear transformation

(3), the digital filter can be obtained as

21




G(z) = G(s) . D)
Z -
z

|

2
s ==
T

-t

By the mapping of the bilinear transformation (Fig. 1), all the stable poles
of G(s) will be converted into stable poles in G(z). Consequently, the
bilinear transformation (7) always yield stable digital filters from stable

analog filters.

The effect of frequency warping or distortion (5) on the analog to
digital filter conversion (7) is illustrated in Fig. 3. The figure also

clearly reveals an explanation for the phenomenon of aliasings.

It is remarked that the transformation gain T for the bilinear
transformation (7) has not been specified. A systematic technique for
determining T is given in the sequel. The technique also automatically

compensates for the frequency warping or distortion.

DESIGN CONSIDERATION

The digital zero-order-hold (ZOH) reproduction of an analog signal
having a dominant working frequency w (or correspondingly wd) depends on
the ratio wd/ms. Fig. 4 illustrates the variation, with respect to the
ratio md/ms, by a sample and ZOH schemel As can be seen from the figure,
the "quality" of the digital reproduction of the analog signal improves
with lower ratio of wd/ws. It is, therefore, desirable to design a digital
filter whose working or critical frequencies are much lower than the
sampling frequencies. A first design consideration in a digital filter

design is to ensure that the ratio

0 < md/ws << .5 . (8)

1 The microproessor-based sample and ZOH scheme is described in Section 3.

22



Remark 1: For simplicity and clarity, the above argument is approached
from time-domain point of view using visual experimental results. It may
be remarked that similar conclusions can be obtained using frequency domain

analysis [ 6 ]. One also notes that (8) is in agreement to the Sampling

Theorem due to Shannon and Nyquist [ 6°7.

It is also important to observe the time delays in the digital outputs

in reference to the continuous signals in Fig. 4.

Once the ratio wd/ms has been selected, one may define a factor R as

.
R 4 tan (__Q T o, 0 < md/w < .5
W s
s
_ &t (9
2

where (9) follows from (5). Note that 0 < R < =, From (9), the transforma-

tion gain 1 is obtained as

2R

T= — . ' (10)
©a

Using (8) in (3b), the bilinear transformation becomes

z -1
z + 1 * (11)

|

| w
i _ _a
| s = R

The above design condideration of first specifying a desired ratio
»wd/ms thus leads to a systematic choice of the transformation gain T for

the bilinear transformation as shown in (11).

Using (11) as the basis for bilinear transformation, the conversion

of an analog filter G(s) with working or critical frequency w, to a

23



corresponding digital filter G(z) with working or critical frequency

Wy follows from (7) as

G(z) = 6(s) (12)

w
1]
WI e
»

N
k
-

N
4
[

The bilinear transformation in (12) ensures that the desired

cud/wS will be obtained.
Finally, it is important to note that the working or critical

frequency Wy of the digital filter can be varied by simply adjusting the

sampling frequency W

24
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Fig. 1. Mapping of s - plane into z - plane by bilinear transformation
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Fig. 2. Frequency warping in bilinear transformation
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5.1.2 DESIGN OF DIGITAL LOWPASS FILTERS

~ The design of an n-th order analog Butterworth lowpass filter GLP(S)
with critical cut-off frequency woe is given in Appendix A2. To obtain
a corresponding digital Butterworth lowpass filter GLp(z), the following
systematic procedure may be used:

(a) Select the ratio wdc/ws’ where w, 1is the desired critical cut-off

de
frequency of the digital lowpass filter (see Fig.3a).

(b) Obtain the factor R and transformation gain as

w

de
R = tan ( 5 ™)
o
T
= (13a)
or
2R
=R (13b)
ac

(c) Using the substitution described by (12), a corresponding n-th
order digital Butterworth lowpass filter is obtained as1

G,,(2) = G, _(s) "
LP Lp o1
STR Zz+1
(z+1)"
= K

(z—pl) (Z-pz) ce (z—pn)

KG(z) , (14a)

>

p, = ——— (14Db)
+ (1-u,R)

and, for unity gain in the low passband,

1 Further details in the manipulation are found in Appendix C.
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Rn

(l—ulR)(1~u2R) .o (1—unR)

1
= — , (14¢)
c(1)

where u, are the poles of the normalized n-th order analog

Butterworth lowpass filter GLPN(S) described in Appendix Al,

Remark 2:

. Note that the digital filter is explicitly dependent on the factor R.
. The critical frequency will be determined by the sampling frequency
through the ratio w, /w .
de s
. The gain K may be arbitrarily chosen if so desired.

Example 1: 3rd Order Digital Butterworth Lowpass Filter

Problem: Design a 3rd order digital Butterworth lowpass filter with
cut-off frequency Wye®
Solution: From Appendix Al, the normalized 3rd order analog Butterworth

lowpass filter is given by

1
Grpy(8) = (amig) (omty) (o) R (15a)
where
u = -1 , (15b)
u, = =.5 + J.866 (15¢)
ug = =.5 - j.866 (15d)
30




Following the above procedures:

With this ratio, the digital

(a) Select w, /u_ = 1476 or w = 6.77w, .
. de’ s s de
ZOH reproduction of a sine wave at'wdc is approximately as shown in
Fig.5 .
1

“ae
w
s
Fig.5
(b) R = tan(.14767) = .5 . (by choice of (a)) (16)
(c) 1+ (-1)(5)
Cop - = .3333 (17a)
1-(-1)C(5)
1+ (-.5+ §.866)(.5)
b = = .4286 + §.4949 (17b)
2 1 (-.5+ 4.866)(.5)
1+ (=.5 - §.866)(.5) .
Py = = 4286 - j.4949 = p, (17¢)
1 - (-.5 - §.866)(.5)

31




(.53
‘- .
(1 - (-1)C.5(L - (-.5 + 7.866)(.5)(1 - (-.5 - ¥#.866)(.5))

. 04762 (174)
The 3rd order digital Butterworth lowpass filter is thus given by

L04762(z + 1)°

Gpp(2)

(z-.3333)(z - .4286 - j.4949)(z - .4286 + j.4949)

L04762(2° + 32° + 3z +1)

z~ - 1.1905z" + .7143z -~ .1429

The theoretical frequency response of GLP(z) in (18), computed as

IGLP(erT)I versus m/ws, is shown in Fig. 6.

The recursive equation for the digital lowpass filter follows from
(18) as

y(k) = 1.1905y(k-1) - .7143y(k-2) + .1429y(k~3)

+ .04762[u(k) + 3u(k-1) + 3u(k-2) + u(k-3)] (19)
where y(k) and u(k) are respectively the discrete output and input
sequences of the filter. The microprocessor-based implementation of the
lowpass filter given by (18) or (19) is described in Section 3. An

experimental frequency response of the microprocessor-based 3rd order

digital Butterworth lowpass filter is presented in Section 4.
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5.1.3 DESIGN OF DIGITAL HIGHPASS FILTERS

The design of an n-th order analog Butterworth highpass filter
GHP(S) with critical cut-in frequency . is given in Appendix A3. The
following procedure may be used to systematically obtain & corresponding

digital Butterworth highpass filter GHp(z) from GHP(s).

(a) Select the desired ratio mdc/ws where ©3e is the critical cut-in
“r= . frequency-of the digital highpass filter (see Fig.3b).
(b) Set

wdc
R = tan Ca—— )
s
0 LT
= 5 , (20a)
so that
2R
v = 28 _ (20b)
ac

(¢) Using the conversion scheme (12), a corresponding n-th order

digital Butterworth highpass filter is obtained asl

Gyyp (2)

GHP(S)} "
| _ _ac z-1
'S ETR 741

K(z-1)"

(z—pl)(z~p2) . (z—pn)

KG(z) (21a)

with

1 Details given in Appendix C.
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py = T (21b)

and, for unity gain in the high passband,

1

(1 - ulR}(l - qu) S ¢ unR)

1.
i (21e)
¢(-1) °

where u, are the poles of the normalized n-th order analog Butterworth

lowpass filter GLPN(S) described in Appendix Al.

Remark 2 similarly applies to the ‘ above design of
digital Butterworth highpass filter.

Example 2: 3rd Order Digital Butterworth Highpass Filter

Problem: Design a 3rd order digital Butterworth highpass filter with
cut-in frequency Wye®
Solution: From Appendix A3, the 3rd order normalized analog Butterworth

lowpass filter is given by

3
s

G (s) = (223)
ien (s - u)(s ~u)(s - u)

where

' = 1 » 22b
u, . (22b)
u, = -.5+ j7.866 (22¢)
uy = -.5 - 3.866 (228
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Following the procedures outlined above:

(a) Select wdc/wS =

ZOH reproduction of a sine wave at Wie

Fig.7.

05 0orw =
s

1

20 de

With this ratio, the digital

is approximately as shown in

T 1
/// Highpass

03 4 _fg
6de .25 W
W
s Fig. 7.
(b) P = tan(.05m) = ,1585 (23)
1+ (~1)(.1585)
(c) p; = = .72637 (242)
1 - (-1)(.1585)
1+ (-.5+ j.866)(.1585)
P, = = .82366 + j.23195 (24B)
) 1 - (-.5+ j.866)(.1585)
1+ (-.5 - 3.866)(.1585) *
Py = = .82366 - 3.23195 = p, (24¢)
1 - (-.5 - j.866)(.1585)
Hence,
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K(z ~ 1)3

Gyp(2) =
(z - .72637)(z - .82366 - j.23195)(z - .82366 + j.23195)
K(z3 - 322 + 3z - 1)
= 5 (25a)
2~ - 2.3737z" + 1.9288z - .5319
with
K= 1/G(-1) = .72929 . (25b)

The theoretical frequency response of Gﬁp(z) in (25), computed as

GHp(erT)I versus w/w_ is shown in Fig.8.

The recursive equation for the digital highpass filter follows from
(25) as

y(k) = 2.3737y(k-1) - 1.9288y(k-2) + .5319y(k-3)
+ .72929[u(k) - 3u(k-1) + 3u(k-2) - u(k-3)] , (26)
where y(k) and u(k) are respectively the output and input sequences of the
filter. The microprocessor-based implementation and experimental

frequency response of the highpass filter (25) or (26) are described in

Sections 3 and 4.
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Fig. 8. Theoretical Frequency Response of GHP(Z) given by (25).

38



5.1.4  DESIGN OF DIGITAL BANDPASS FILTERS

The design of a 2n~th order analog Butterworth bandpass filter
GBP(S) with bandwidth BW and mid-band frequency ® 0 is given in Appendix A5.
(2)

From GBp(s), a corresponding digital Butterworth bandpass filter GBP

can be obtained as follows:

(a) Choose w, /w , where w, 1is the mid-band frequency of the digital filter,

do
so that (w

do

BW
do + 75)/ws << .5,

(b) Obtain
W
R = tan GJEZ )
)
s
W, T
= (273)
2
or
2R
T = a—-— (27b)
~ao

(¢) 1Invoking the conversion scheme, a corresponding 2n-th order digital

Butterworth bandpass filter can be obtained asl’2

Gpp(2)

|
GBP(S)%

: 2 z-1
tg == —=
' T

z+1

K(z - D)™z + D"
= * o (28a)
(z-p)(z-p) . (z=-p)(z=-p)

* denotes complex conjugation.

2 Details of manipulation is given in Appendix C.
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with

i

>

g &

w2/

; 2/t - e,)(2/T - cf)
i___l 1 1

where T is given by (27).

Remark 3: The design of the bandpass filter (28) assumes that

|BWu, |

(28b)

(28c)

(284d)

2 << éwio (see Appendix A5). This is equivalent to considering a

bandpass filter with a high Q-factor (the ratio of the midband frequency

to the bandwidth),

i.e.,

40
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Example 3: 6th" Order Digital Butterworth Bandpass Filter

Problem: Design a 6th order digital Butterworth bandpass filter with

bandwidth of BW = 27 x 20 rad/s and midband frequency of
= 21 x 20 rad/s. (Note the Q-factor = fg = 1.)

w
do B

Solution: From Appendix A5, a 6th order analog Butterworth bandpass
filter having the above specification (BW = 27 x 20,

W= W, = 2rx 20) 1is given by

(BW)383
G (s)

(s - Cl)(S’— c:)(s - cz)(s - c;)(s - c3)(s - c:) (30a).

with

* (27 x 20)(-1)

Cys €1 = + j2mr x 20
2
= =207 + j4Orw (30b)
(27 x 20)
Cys €3 = ————— (-.5 + j.866) + j2rx 20"
2 a
= ~10m + j57.327, -10m - j22.687 (30c)
*  *
Ch» Cq = -10w - j57.32m, -10m + j22.68r . (30d)
(a) Select de/wS = ,2 or w, = Smdo' With this ratio, the relative

position of the passband with respect to the sampling frequency is

approximately as shown in Fig. 9.
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()

(c)

14
) sampling
-7 BW frequency
0 ' + . : f
0 10 20 30 50 100 Hz
Fig. 9. BandPass Filter
R = tan(.2m) = .73
2 1172 (31)
T
* 172 + (=207 + j40m) +§1.3476
Pys Py = = .6246e—
172 - (-207 + j40m)
= .1382 + j.6091 = .14 + j.61 (32a)
* 172 + (-10m + j57.32w) | +§1.6326
Pyps Py = = .8409%e—
172 - (-10m + 357.32w)
= =-,0519 + j.8393 = -.052 + j.84 (32b)
* 172 + (-107 + j22.68m) +4.8194
P3s Py = = ,7319e~
172 - (-10w + j22.68m)
42




= .4996 + §.5348 = .50 + j.53 (32¢)

2 2 * 2
C; - cl)C; - cl) = 266.35
2 2 * 2
C; - cz)(;-- c2) = 271.68
2 2 * 2
6; - c3)c; - c3) = 215,54

(21 x 20)3(172)3
= .0415 (32d)

2

Hence,
0.0415(z - 1)3(z + 1)3

G (z) =

K= 2 3
266.35% x 271.68% x 215. 54
| BP

(z - .14 - §.61)(z - .14 + §.61)(z + .052 - §.84)(z + .052 + j.84)

| 1

| “x
| (z - .5-3.53)(z - .5+ j.53)
0.0415(26 - 324 + 322 - 1)
= 6 5 A 3 2
(z~ - 1.176z" + 1.7778z - 1.3219z~ + 1,0035z" - .3611lz + .1473)

(33)

The theoretical frequency response of GB

P(z) in (33), computed as
jwT
GBP(er )| versus m/ws, is shown in Fig. 10.

The recursive equation for the 6th order digital bandpass filter follows

from (33) as

y(k) = 1.176y(k-1) - 1.7778y(k-2) + 1.3219y(k-3) - 1.0035y(k-4)
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+ .3611y(k~5) - .1473y(k=6) + .0415u(k) - .1245u(k-2) + .1245u(k-4)
- .0415u(k-6) (34)
where y(k) and u(k) are respectively the output and input of the

filter. The microprocessor-based implementation and the experimental

frequency response of the bandpass filter (33) or (34) are given in Sections
3 and 4.
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Theoretical Frequency Response of GBP(z) given by (33).
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5.1.5 DESLGN OF DIGITAL BANDSTOP FILTERS

The design of a 2n-th order Butterworth bandstop filter GBS(s) with
bandwidth BW and midband frequency ©_g is given in Appendix A6. Using

GBS(S), a corresponding digital Butterworth bandstop filter G p(z) can be

B
obtained as follows:

(a) Choose wdo/ws’ where w, ~ is the desired midband frequency of the

. BW.
digital filter, so that (wdo + 5 )/wS << .5,

(b) Obtain
wdo waoT
R=tan (— 7) = , (35a)
w 2
S
so that
r = 2R
LR ' (35b)

(¢) Using the bilinear transformation, a corresponding 2n-th order

digital Butterworth bandstop filter can be obtained as

G,.(2) =@ (s)?

BS BS |
E _2z-1
1S ST 4
K(z - z )n(z - z—l)n
0 o ,
= * * ’ (368.)
(z - pl)(z -pp) ... (z - pn)(z - pn)
where
2/t + ¢
p, & i (36b)
i 2/t - ¢
i
LB, -
e, = Sug*de o, (see Appendix AS5) (36¢)
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Example 4:

Problem:

Solution:

Cys Cy

€3> C3

[2/0)2 + o2 1™

.kl a0 — ., (360
2/t - cl)(Z/T - cl) .. (2/7 - cn)(Z/T - cn)
e = 2/t - Ju )/ (2/1 + ju_) . (366)

6th Order Digital Butterworth Bandstop Filter

Design a 6th order digital Butterworth bandstop filter with

BW = 27 x 20 rad/s and midband frequency of Wy, = 27 x 20 rad/s.

(Note the O-factor = wdo/BW = 1.)

From Appendix A6, a 6th order analog Butterworth bandstop
filter having the above specification (BW = 27 x 20 and

w o = Wy, = 27 x 20) is given by

, (s2 + wzo)3
(s) = (37a)

(s - e (s = e (s = e)(s = (s = ) (s = cp)

* ,
¢, = =207 + 340 (37b)
*

= -10m + j57.327 . (37¢)
*

= -107 + j22.681 . (37d)

We note that ¢, in (37) are the same as those of (30) due to certain

i

similarities in the design specification of Examples 3 and 4. For

convenience, let us also choose the design variables as in Example 3.

That is:

(a)

wdo/ms

= .2, With this ratio, the relative position of the stopband

with respect to the sampling frequency is approximately as shown in

Fig. 11 s
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(b)

(c)

”

._.,\
. - Y sampling,
\\‘ frequency
\
\\ 1
0 L] ’ .‘
0 10 20 30 50 100  Hz
Fig. 11, Bandstop Filter
R = tan (.27) = ,73 ,
2/t =172 (38)
*
Py» Py = .14 + j.61,
*
Py» Py = =.052 + j.84 (39)
= .50 + §.53
p3’ p3 = e i J. ’
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E-epE -l = 266357

E-epE e = 2768 (40)

G- - =558’
In addition, we compute

2.2 2 2 2

(—T-) + W = 1727 + (27 %20)° = 45375 (41a)
so that (36e) yields

K = 453753 = ,384 . .(41b)

2

266.35% x 271.68% x 215.542

The zeroes specified by (36d) are given by

172 + j2m x 20

o~31.2619 .3040 - §.9527 (423)
° 172 - j2m x 20

2" = L3040 + .9527 . (42b)

From the above, the corresponding 6th order digital Butterworth bandstop

filter is obtained as

.384(z - .3040 + §.9527)°(z - .3040 - §.9527)°

Gpg(2) =
. ‘ (z - .14 - §.61)(z - .14 + j.61)(z + .052 - j.84)(z + .052 + j.84)

1

x
(z - .5-3.53)(z - .5# j.53)
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.384(2% - 1.8242° + 4.109z° - 3.8732° + 4.109z2 - 1.824z + 1)

= (43)
6 5 4 3 2
z - 1.176z” + 1.7778z - 1.3219z° + 1.0035z" - .3611z + .1473

The theoretical frequency resﬁonse of GBS(z) in (43), computed as
iGBS(eij)iversus w/ws is shown in Fig.12.

The recursive equation for the 6th order Butterworth bandstop filter
follows from (43) as

y(k) = 1.176y(k-1) - 1.7778y(k-2) -+ 1.3219y(k-3) - 1.0035y(k~4)

+ .3611y(k-5) - .1473y(k-6) + .384[u(k) - 1.824u(k-1) + 4.109u(k-2)

- 3.873u(k-3) + 4.109u(k-4) - 1.824u(k-5) + u(k-6)1, (44)

where y(k) and u(k) are respectively the output and input of the digital

filter. The microprocessor-based implementation and the experimental

frequency response of the bandstop filter (43) or (44) are given in
Sections 3 and 4,

50



deT

l6gge ")

L’“‘w\
|t

| 5
AR

0 20 40 60 80 100 Hz

Fig. 12. Theoretical Frequency Response of GBS(z) given by (43).
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5.1.8 A FURTHER EXAMPLE

The effect of pole variation in the filter may be vividly illustrated

by considering the following example.

Examgle 5:

Problem:

Solution:

3rd Order Digital Chebychev Lowpass Filter

Design a 3rd order digital Chebychev lowpass filter with cut-off
frequency W40 having a ripple factor r = 1 db. Similar design

considerations for Fxample 1 may be used.
Let a 3rd order analog Chebychev lowpass filter be denoted by

K
(s) = = (45) .
(s - ul) (s - uz) (s - u3)

GLPC

where the poles ui, ué and ué may be determined as follows.

The specification of the filter translates into the frequency response

sketched in Fig. 13., The ripple factor

so that

=1

1
20 log(l) - 20 log(/rzi:jgf— )

10 log( 1 + 52 ), (462)

- /10t/10 _

.5088 | (r

1) . (46b)

52




gain

Fig. 13. Chebychev Lowpass

(db)

Filter

Let n = 3 denote the order of the filter and define

1 1
a —-Hvsinh ( E-)

1 1.2
=n1n(z+/<z) + 1)

=

/

1. 1 / 1 2
=3In (=55 *+/ (50880 + 1
= .4760 ,
so that
a -a
e - e
tanh a = Ta
e + e
= ,4430 .

)

(47a)

(47b)

The poles of the analog Chebychev lowpass filter may be treated as

being the poles of the analog Butterworth lowpass filter whose real parts

are reduced by a factor of tanh a. Using the values of uy in Example 1,

the poles of the "normalized" analog Cheybechev filter (45) can hence be
P Yy

determined from
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ui = Re {ui} X tanh a + jIm{ui}.. (48)
as

uy = -.443 (49a)

ué = -,2215 + j.866 _ (49b}

uy = -.2215 - j.866 . (49¢)

Using relationship (14b), the poles u! in the s-domain can be mapped into

i
the poles in the z-domain as
(L + u'r)
p! = ——t . (50)
* (1 - u}R)

With the same choice of R as in Example 1 (i.e., R = .5), we obtain

1+ (-.443)(.5)

p! - - 644 (51a)

1 1 - (-.443)(.5)
1+ (=.2215 + §.866)(.5) .

p) = = .8269e3°82%7 563 1 4.600
1 - (-.2215 + §.866)(.5)

*
py = py = .563 - 3.609 . (51c)

Hence, a corresponding 3rd order digital Chebychev lowpass filter can be

obtained as

K(z + 1)3
G, . (z) = | (52)
ERe (z - p))(z - p)(z = p)
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K(z + l)3

(z - .644)(z - .563 - §.609)(z - .563 + j.609

K(z3 + 322 + 3z + 1)

(22 - 1.772% + 1.4132 ~ .443)

KG(z) (52a)

where for unity gain at the low frequency

K = — = — - .025 . . (52b)
G(1) 8

The theovetical frequency response of GIDC

(erT)I versus w/wS is shown in Fig. 14.

(z) given by (52), computed
as !GLPC
The recursive equation for the 3rd order Chebychev lowpass filter
follows from (52) as

y(k) = 1.77y(k-1) - 1.413y(k-2) + .443y(k-3)
+ .025u(k) + .075u(k-1) + .075u(k-2) + .025u(k-3) , (53)

where y(k) and u(k) are the output and the input of the digital filter.
The microprocessor-based implementation and experimental frequency
response of the digital Chebychev lowpass filter (52) or (53) are given in
Sections 3 and 4.
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Theoretical Frequency Response of GLPC(Z) given by (52).

Fig. 14,
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5.2  MICROPROCESSOR RFALIZATION OF DIGITAL FILTERS

The microprocessor firmware for implementing the dipital frequency

selective filters designed in Section 2 is described below.

Fig.1l5 shows the block diagrams of the hardware for the microprocessor-
based signal processing system used in the realjization of the digital filters.
The CPU of the system is the Motorola MC6802 microprocessor, which is
supported by 2716 EPROM (monitor program), 6810 RAM's, 6821 PIA's, keypad,
L.E.D. display and interfacing buffers to form the microcomputer called

MOUSE1 (see Fig.1l6 ). The microcomputer operates at a clock rate of 1 MHz.

The data acquisition unit is the Datel MDAS-16 multiple (multiplex)
channel 12-bit A/D converter with a conversion time of about 20 us per data.
A Datel Hz12BGC 12 bit D/A converter with a settling time of 3 us is used
as a zero-order-hold output of the microprocessor-based system. The inter-
face between the 8-bit MC6802 and the 12-bit I/0 (A/D and D/A) peripherals
are done through 6821 PIA's (Fig.17). The software (< 1k bytes) for the
digital filters are stored in the external 2716 EPROM., The additional
2114 RAM's provide handy facilities for debugging and immediate alterations
of the software if desired. The wiring diagrams for the microprocessor-

based signal processing system is shown in Figs. 16 and 17.

1Acronymn for Microcomputer of Oakland University School of Fngineering.
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The main consideration in the microorocessor software for the digital
filters involves the development of fast and efficient arithmetic subroutines,
the scaling of the recursive digital filter equations, the handling of

saturation and some memory management.

A fast 3 bytes x 1 byte multiplication subroutine with an execution
time of about 96 us was developed for the digital filter implementation.
Other main subroutines include a 3 bytes + 3 bytes summation
(about 85 us), transfer and negation of 3 byte data. Details of these

subroutines are given in Appendix B.

In order to minimize the occurrence of saturation (overflow or underflow)
in the finite wordlength data (3 bytes or 24 bits), the recursive formulas
for each of the filters will be scaled in a fashion similar to those done
in an analog computer simulation. The scaled recursive equations for the

digital .filters from Examples 1 - 5, are shown in Table 1.

It is remarked that the forward gains K of the filters may be reduced,
if necessary, to achieve a pvoper scaling which will not saturate the filter
output. Alternatively, the output saturation can be handled by use of

overflow test instructions in the microprocessor software.

The 6802 microprocessor software for implementing the digital

frequency selective filters described in Table 1 are given in Appendix B.
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i_hput

rFr— === === - === -]
l 6810 © 6802 6821 |
| CPU PIA ,
[ .. : : |
I ~z |
|- KEYPAD | |
2716
| DISPLAY

W output
MDAS-16 | 6821 2716 2114 6821 HZ12BGC | ,,
A/D | PIA EPROM RAM Pi1A D/A

Fig. 15 Block Diagram of Microprocessor System
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Table 1: SCALED RECURSIVE EQUATIONS FOR THE DIGITAL FILTERS

Butterworth Low-Pass (Example 1)

84y(k) = y(k-1) - .6y(k-2) + .12y(k-3)
+ .04u(k) + .12u(k-1) + .12u(k-2) + .04u(k-3)

Butterworth High-Pass (Example 2)

L4213y(k) = y(k-1) - .8126y(k-2) + .2241y(k-3)
+ .3072u(k) - .9217u(k-1) + .9217u(k-2) - .3072u(k-3)

. Butterworth Band-Pass (Example 3)

.5625y(k) = .6615y(k-1) - y(k-2) + .7436y(k-3) - .5645y(k-4) + .2031y(k-5)
= .0829y(k-6) + .0233u(k) - .0700u(k-2) + .0700u(k-4)
- .0233u(k-6)

Butterworth Band-Stop (Example 4)

.5625y(k) = .6615y(k-1) - y(k-2) + .7436y(k-3) - .5645y(k-4) + .2031y(k-5)
- .0829y(k-6) + .216u(k) - .39%u(k-1) + .8875u(k-2)
- .8366u(k-3) + .8875u(k-4) - .39%%u(k-5) + .216u(k-6)

Chebychev Low-Pass (Example 5)

.565y(k) = y(k-1) - .7983y(k-2) + .2503y(k-3)
+ .0141u(k) + .0423u(k-1) + .0423u(k-2) + .0141u(k-3)
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5.3 EXPERIMENTAL FREQUENCY RESPONSE OF MICROPROCESSOR-BASED DIGITAL FILTERS

The experimental set-up for recording the frequency response of the -
microprocessor-based digital filters is shown in Fig.18 . The test input
u(t), generated by the voltage controlled oscillator, consists of a constant
amplitude sinusoidal signal whose frequency modulates or sweeps (sufficiently)

slowly from low frequency to high frequency and vice versa, i.e.,
u(t) = A sin wt

where the frequency w is controlled by a triangular or saw-tooth signal w(t).
The digital output of the filter is recorded on a storagé scope whose
horizontal axis is driven by the same w(t). From the set-up, one can
experimentally determine the frequency responses of the microprocessor-based
digital filters. TFigs. 19-23 show the actual experimental frequency
responses of the microprocessor-based 3rd order filters designed in the

examples of Section 2.

For comparison,  the - eritical frequencies of the theoretical
filters and the implemented microprocessor-based filters are tabulated in
Table 2. As shown in the table, the specification of the filters in

terms of Wie® “do and BW have been met satisfactorily.

It is important to note that the critical frequencies ®ic and Y40
can readily be altered by simply adjusting the sampling frequency W
There is, however, an upper bound on the maximum possible sampling frequency
which can be used for the filter due to the finite speed of the microprocessor.
Nevertheless, the design specifications ° concerned -in .
the present investigation can be satisfactorily fulfilled by the current
generation of 8-bit microprocessors. For more stringent design specifications,
one may resort to the new generation of 16-bi£ microprocessors and/or

use of high speed arithmetic logic chips.
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u(t) = A sin(w(t)+d)

Fig. 18 Experimental Set-up for Measurement of Frequency Response
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Controlled > -Based
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y(t)

(Digital Filters)
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Fig.1l9 Experimental Frequency Response of Microprocessor-

Based 3rd Order Butterworth Lowpass Filter GIP(z), (Example 1).

Fig.20 Experimental Frequency Response of Microprocessor-Based

3rd Order Butterworth Highpass Filter GHP(z) (Example 2)
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Fig.21 Fxperimental Frequency Response of Microprocessor-Based

6th Order Butterowrth Bandpass Filter GBP(z) (Example 3)

Fig.22 FExperimental Frequency Response of Microprocessor-Based

6th Order Butterworth Bandstop Filter GBS(z) (Example 4)
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f

Fig.23 Experimental Frequency Response of Microprocessor*Based

3rd Order Chebychev Lowpass Filter (Example 5)

e
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Table 2. Critical Frequencies of Theoretical and Microprocessor-Based Filters

Cut-0ff or Frequency at
Digital Sampling Cut-In Attenuation Remarks
Filter Frequency | Frequency = 0.1
wg (Hz) ©4c (Hz) ©y 1 (Hz)
3rd Order | mpooretical 200 30 52
Butterworth —
Lowpass Exper imental 200 27 49
3rd Order Theoretical 200 29 44 The cut-off rate is
Chebychev faster than that of
Lowpass Experimental 200 27 45 the Butterworth filter.
3rd Order
Butterworth Theoretical 200 ] 10 5
Highpass Experimental 200 9.5 5
First
Digital Sampling Midband - Aliasing
Filter Frequency | Frequency Midband Freq.| Bandwidth Remarks
W, (Hz) W, (Hz) wy (Hz) BW (Hz)

6th Order
Butterworth Theoretical 100 25 75 7.5 wo/ms = ,25
Bandpass Experimental 140 28 100 17 wo/ws = ,2
6th Order :
Butterworth Theoretical 100 20 80 14
Bandstop Experimental 104 16 ' 78 16
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APPENDIX A

SUMMARY OF ANALOG BUTTERWORTH FREQUENCY SELECTIVE FILTERS

Al. Low-Pass Filter GLPN(s) with Normalized Cut-Off Fre'qu'ency'(t_pac =1):

G, . (8) = —m ———— _— (A1)
(s - ul)(s - u2) (s - un)

where1 u,s i=1, ..., n, are the stable poles which lie on the unit circle

\
1 1 1
in the s-plane as shown in Fig.Al.

s - plane s - plane

6=1T v=1

n =odd (e.g., n=3) n

even (e.g., n=4)

We note that complex poles must occur in complex conjugate pairs in order

for the filter to be physically realizable.

\
\
|
|
Fig. Al. Pole Locations of Normalized Butterworth Lowpass Filter
Al




A2: Low-Pass Filter GLP(S) with Arbitrary Cut-Off Frequency w_ :

To translate GLPN(S) into GLP(S), one substitutes s/wac for s in
(A.1) and obtain

w w w

ac ac ac
GLP(S) = - T .
(s - macul) (s - macuz) eee s = wacun) (A.2)

A typical set of pole locations of GLP(s) is shown in Fig.A2.

s - plane

- 0 W
ac ac

Fig. A2. Pole Locations of Butterworth Lowpass Filter with ©oo (n = 5)
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A3: High-Pass Filter G

HPN(s) with Normalized Cut-In Frequency (wac =1):

To translate GLPN(S) into GHPN(S), one substitutes 1l/s for s in
(A.1) and obtains
s s s
G,y  (8) = e .
HPN (1‘—«sul)(l - suz)’ (1 - su)
n
) (—1/u1)s (—1/u2)s (—l/un)s
(s = 1/uy) (s - 1/u,) (s = 1/u)
-- s s s
= PO T T S Py (A.3)
(s - ul) (s - u,) (s - un)
*
whére the last equality follows from the fact that l/ui =ug, luil =1
and u, occur in complex conjugate pairs. A typical set of poles and zeroes
for GHPN(S) is shown in Fig.A3.
8 - plane

Fig. A3. Pole-Zero locations of Normalized Butterworth Highpass Filter. (n = 3)
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A4: High-Pass Filter GHP(S) with Arbitrary Cut-In Frequency W .t

To translate GHPN(S) to G__(s), one substitutes s/wac for s in (A.3)

HP
and obtains

s s s
GHP(s) = N

(s - macul) (s - wacuZ) (s - macun) ’

where a typical set of poles and zeroes for GHP(S) is shown in Fig.A4.

s - plane

- | @(J w

ac ac

Fig. A4. Pole-Zero Locations of Buttetworth Highpass Filter with O (n

A4
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A5: Band-Pass Filter GBP(S) with Bandwidth BW and Midband Frequency ot

A high Q-factor will generally be assumed, i.e., 0 & w /RW > 1.

ao -~
To translate GLPN(S) to GBP(s), one substitutes
1 32 + wio
— ————>- for s in (A.1) and obtains
BW s ,
BW.s BW.s BW.s
G _(s) = . . .
BP 7 7 ) ) ) )
(s ~-5§Wuls + wao) (s” - BWuzs + mao) (s BWuns + wao)
A BW.s BW.s . BW.s
(s - pl)(s - ql) (s - pz)(s - qz) (s - pn)(s - qn)
BW.s ’ BW.s BW.s

, (A.5)

e

(s - cl)(s - c;) (s - cz)(s - c;) (s - cn)(s - c:)

where

2

A BW / 2
= — 3 -
pi’ qi ..‘ui _": 1 (Bwui) l}wao

2

which may be approximated by

Ef‘ui + jw

>

*
c,, ¢
i’ i ao

for a high O-factor. A typical pole-zero location of GBp(s) is shown in
Fig. AS5.
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€
Cl wao
BW/2 s -~ plane
€3
O
°3
BW/2
*
c1 mao
*
€5

Fig. A5. Podle-Zero Locations of Butterworth Bandpass Filter with

Bandwidth BW and Midband Frequency 0 "

BW/2 s ~ plane

Fig. A6. Pole-Zero Locations of Butterworth Bandstop Filter with
Bandwidth BW and Midband Frequency U
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A6: Band-Stop Filter GBS(S) with Bandwidth BW and Midband Frequency w

2

A high 0O-factor will similarly be assumed, i.e., 0 = wao/BW > 1.
To translate GHPN(S) to GBS(S), one substitutes
s
BW —4————— for s in (A.3) and obtains
WS
s 4w
ao
(s2 + 0 ) (s2 + 0 ) : (s2 + w2 )
G (s) = 5 : ao 5 5 ao — > ao 5
BS )
(s” - BWuls + mao) (s - BWuzs + mao) (s° - BWuns + wao)
(s+3wa°)(s-3wao) (s+3wao)(s—3mao) (s+3wao)(s-3wao)

R

(s - cl)(s - cI) (s - cz)(s - c;) ' (s - cn)(s - c:)

(A.6)

where c; are as defined for (A5). A typical pole-zero location for Gpg(s)

is shown in Fig. A6.
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APPENDIX C

DERIVATION OF DIGITAL FILTERS

C.1. Derivation of Eq. (14)
From (A.2),

6 o (s) = Yac Yac ... “ac
LP (s-wacul) (s—wacuz) (s—wacun)

Using the substitution in (14), one obtains

G o(z) = G ,(s)
P i e
TR z+1
_ Yac cee “ac
e 241 Yac z-1
(= 2T - vactl) O 7T -~ wackn)
B R(z+1) cee R(z*1)
T lz-l - Rul(z+l)] [z-1 - Run(z+l)]
_ R" (z+1)"
- l+ulR ' l+unR
(1-u1R)...(1-unR) (z - T:UI§)"'(Z - T:ﬁ;ﬁ)
A (z+1)"

(z-py)...(z-p,)

(c.f. Section 2.2)

C.2. Derivation of Eq. (21)
From (A.3),

5 s e s
(s-wacup)  (s—wycup) (s=wacp)

Spls) =

c.1




Using the substitution in (21), one obtains

GHP(Z) = GHP(S)

S = i)_a-E Z-l
K z+1
Pac z-1 Jac z-1
_ R z+l R zt
11 (]
ac z-1 ac z-1
(R 7T~ “acYy) (R 29T~ wackn!

z-1 ces z-1
[z-1 - ulR(z+1)] Lz-1 - u R(z*1)]

i} 1 (z-1)"
- LR I+u R
(l—ulR)...(l—unR) (Z - m} ces (Z - m)
1 n
8y (z=1)"

(z-p;)...(z-p,)

(c.f. Section 2.3).

C.3. Derivation of Eg. (28)

From (A.5)

Goo(s) = BW.s BW.s cee BW.s
8P (s—cl)(s—cl*) (s-cz)(s—cz*) (s—cn)(s—cn*)

Using the substitution in (28), one obtains

Ggp(2) = Ggp(s)

2zl
S=3 I
2 z-1 2 z-1
o BT T BW T T
=72 -1 Z 2-1 * 2 z-1 2 z-1 *
CFI-EF-a)  (fFE-SIEFE o)
BW £ (2-1)(2+1) BW £ (2-1)(2+1)
= Z z_* 2 z_*
(T*c,) =, ) . (=t ) (5c )
2 2 _* t 1 _rl 2.y, .* T n t ™n
(T -¢ )<, Mz Z )J (2 o) (Tcp) (e He——llz——,1
T 1 T "1 (T -¢p) (T =)
C.2




K (z-1)"(z+1)"
(z-p)(z-p1*) ... (z-p ) (2-p ™)

ne

(c.f. Section 2.4).

C.4. Derivation of Eg. (36)

From (A.6), :

6 (s) = (s*juy o) (s-Ju,,) (s*ju, ) (s=Ju, )
BS(S - (s—cl)(s-cl*) te (s-cn)(s—cn*}

Using the substitution in (36), we obtain

—

s=2%
=T

E

2 z-1 . 2 z-1 )
o Jugo) (T 29T = Jugo)
T2 z-1 2 z-1 tt

(T - T - o)

2
—'-J“ao ?'+Jmao

t ~J%30

2

"""C*

1
L3 -z
T %"

G -cl)(% o ) z-(3— )]

2
T
2
T4

[z-z ]"[z—zglj"

Ax

x (z-p;) (z-p*)
i=1

(c.f. Section 2.5).
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